The effects of kin selection on rates of molecular evolution in social insects.
نویسندگان
چکیده
The evolution of sociality represented a major transition point in biological history. The most advanced societies, such as those displayed by social insects, consist of reproductive and nonreproductive castes. The caste system fundamentally affects the way natural selection operates. Specifically, selection acts directly on reproductive castes, such as queens, but only indirectly through the process of kin selection on nonreproductive castes, such as workers. In this study, we present theoretical analyses to determine the rate of substitution at loci expressed exclusively in the queen or worker castes. We show that the rate of substitution is the same for queen- and worker-selected loci when the queen is singly mated. In contrast, when a queen is multiply mated, queen-selected loci show higher rates of substitution for adaptive alleles and lower rates of substitution for deleterious alleles than worker-selected loci. We compare our theoretical expectations to previously obtained genomic data from the honeybee, Apis mellifera, where queens mate multiply and the fire ant, Solenopsis invicta, where queens mate singly and find that rates of evolution of queen- and worker-selected loci are consistent with our predictions. Overall, our research tests theoretical expectations using empirically obtained genomic data to better understand the evolution of advanced societies.
منابع مشابه
Theoretical Predictions for Sociogenomic Data: The Effects of Kin Selection and Sex-Limited Expression on the Evolution of Social Insect Genomes
Kin selection theory has always been explicitly genetic and has long been invoked to explain the evolution of the sterile worker caste in the social insects. However, sociogenomic studies of the evolution and genomic basis of social insect caste have been largely disconnected from kin selection theory and other related genetic theories of social evolution. Two previous population genetic models...
متن کاملDissecting ant recognition systems in the age of genomics.
Hamilton is probably best known for his seminal work demonstrating the role of kin selection in social evolution. His work made it clear that, for individuals to direct their altruistic behaviours towards appropriate recipients (kin), mechanisms must exist for kin recognition. In the social insects, colonies are typically comprised of kin, and colony recognition cues are used as proxies for kin...
متن کاملMultilevel Selection with Kin and Non-kin Groups, Experimental Results with Japanese Quail (coturnix Japonica)
An experiment was conducted comparing multilevel selection in Japanese quail for 43 days weight and survival with birds housed in either kin (K) or random (R) groups. Multilevel selection significantly reduced mortality (6.6% K vs. 8.5% R) and increased weight (1.30 g/MG K vs. 0.13 g/MG R) resulting in response an order of magnitude greater with Kin than Random. Thus, multilevel selection was e...
متن کاملRapid evolution of immune proteins in social insects.
The existence of behavioral traits connected to defense against pathogens manifests the importance of pathogens in the evolution of social insects. However, very little is known about how pathogen pressure has affected the molecular evolution of genes involved in their innate immune system. We have studied the sequence evolution of several immune genes in ants and honeybees. The results show hi...
متن کاملKin competition, natal dispersal and the moulding of senescence by natural selection.
Most theoretical models for the evolution of senescence have assumed a very large, well mixed population. Here, we investigate how limited dispersal and kin competition might influence the evolution of ageing by deriving indicators of the force of selection, similar to Hamilton (Hamilton 1966 J. Theor. Biol. 12, 12-45). Our analytical model describes how the strength of selection on survival an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evolution; international journal of organic evolution
دوره 66 7 شماره
صفحات -
تاریخ انتشار 2012